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The problem of expanding a density operator p in forms that simplify the evaluation of important classes
of quantum-mechanical expectation values is studied. The weight function P(n) of the P representation,
the Wigner distribution W(o), and the function (n ~ p ~o), where ~n) is a coherent state, are discussed from a
unified point of view. Each of these quasiprobability distributions is examined as the expectation value of a
Hermitian operator, as the weight function of an integral representation for the density operator and as
the function associated with the density operator by one of the operator-function correspondences de6ned in
the preceding paper. The weight function P(a) of the P representation is shown to be the expectation value
of a Hermitian operator all of whose eigenvalues are in6nite. The existence of the function P(n) as an
in6nitely differentiable function is found to be equivalent to the existence of a well-de6ned antinormally
ordered series expansion for the density operator in powers of the annihilation and creation operators a
and at. The Wigner distribution W(0.) is shown to be a continuous, uniformly bounded, square-integrable
weight function for an integral expansion of the density operator and to be the function associated with
the symmetrically ordered power-series expansion of the density operator. The function (a ~ p ~

et), which is
in6nitely differentiable, corresponds to the normally ordered form of the density operator. Its use as a
weight function in an integral expansion of the density operator is shown to involve singularities that are
closely related to those which occur in the P representation. A parametrized integral expansion of the
density operator is introduced in which the weight function W{a,s) may be identi6ed with the weight
function P(o) of the P representation, with the Wigner distribution W(o), and with the function (n ~ p ~a)
when the order parameter s assumes the values s=+1, 0, —1, respectively. The function W(n, s) is shown
to be the expectation value of the ordered operator analog of the 8 function defined in the preceding paper.
This operator is in the trace class for Res&0, has bounded eigenvalues for Res=0, and has infinite eigen-
values for s = 1.Marked changes in the properties of the quasiprobability distribution W(n, s} are exhibited
as the order parameter s is varied continuously from s= —1, corresponding to the function (n~p~a), to
s=+1, corresponding to the function P(0,). Methods for constructing these functions and for using them
to compute expectation values are presented and illustrated with several examples. One of these examples
leads to a physical characterization of the density operators for which the P representation is appropriate.

I. INTRODUCTION

HE statistical description of a microscopic system
may usually be formulated in terms of its density

operator p. The familiar expression for the statistical
average of measurements of a microscopic observable
F is the trace of the product of the operators p and F,

(F)=Tr(pF). (1.1)
In this paper we discuss ways of writing this statistical
average for certain physically important classes of
operators F as integrals similar to the phase-space
integrals of classical probability theory. The preceding
paper' on integral representations for operators and
on correspondences between operators and c-number
functions provides the framework for our analysis' of
this problem.

For simplicity we consider only systems which have
a single degree of freedom. Further, since we have in
mind applications to quantum optics, we describe these
systems in terms of the complex operators a and ut,
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which satisfy the commutation relation La,ut] = 1,
rather than in terms of their real and imaginary parts q
and p, for which fq, p]=ih. Our discussion is thus
directly applicable to a single mode of the electro-
magnetic field.

A number of procedures for simplifying the evalu-
ation of certain classes of expectation values have been
put forward, the first of them by Wigner~ and by
Moyal. 4 A common feature of these methods is the
transfer of statistical information from the density
operator p to a weight function w(n) which refers to
the density operator and whose complex argument o.
represents a point (q', p') in the phase space of the
system. An expectation value (F) is then written as an
integral of the product of the weight function w(u) and
a function f(rr) which refers to the operator Ii,

Tr(pF) = w(n) f(cr)d'n

The integration is carried out over all possible states
of the system, i.e., over the complex n plane, and the
differential d'n is a real element of area proportional to
the phase-space element dq'dp'. The function to(rr) is
not, in general, interpretable as a probability distri-

I E. P. Wigner, Phys. Rev. 40, 749 (1932).
4 J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1948); 45,

545 (1949).
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bution, but it plays so closely the role of one that we
refer to it as a quasiprobability distribution.

The various procedures for expressing expectation
values in the form of Eq. (1.2) differ principally in, the
way in which the functions w(a) and f(n) correspond
to the operators p and F. Because quantum-mechanical
operators do not, in general, commute, there are many
ways of associating operators with functions. With the
function ~a~', for example, we could associate either
the normally ordered operator a~a or the antinormally
ordered operator au~ or, as well, the syrnmetrized
product 2 (ata+aet). The most useful correspondences
are based upon these three types of ordering.

In I we have analyzed various ways of defining
correspondences between operators and functions. We
summarize these results together with some related
ones on series and integral expansions for operators in
Sec. II.

In Sec. III we discuss a procedure for simplifying
expectation values that is based upon the P repre-
sentation~" for the density operator. In this repre-
sentation the density operator assumes the form of a
weighted integral over the projection operators upon
the coherent states. We show that the weight function
P(n) of the P representation is related to the density
operator by a correspondence dehned in terms of anti-
normal ordering. ' '4 The P representation is particularly
convenient for dealing with operators that are written
in normal order; it aGords for the expectation values
of the normally ordered products (at)"a the simple
integral expressions

TrL (et)"a"j= P(n) (n*)"n"d'n.

This relation is a special case of Eq. (1.2) in which the
function w(n) associated with the density operator is
the weight function P(n) and. in which the corre-
spondence between the operator Ii and the function
f(a) is based upon normal ordering.

When the correspondences that associate the func-
tions w(a) and f(n) with the operators p and P are both
de6ned in terms of symmetric ordering, the integral
(1.2) may be identified with the procedure introduced

~ R. J. Glauber, Phys. Rev. Letters 10, 84 (1963).' R. J. Glauber, Phys. Rev. 131, 2766 (1963).
7 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).' R. J. Glauber, Quantum Optics and Electronics, edited by C.

de Witt et al. (Gordon and Breach Science Publishers, Inc., New
York, 1965), p. 63.

9 C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B274
(1965).' K. E. Cahill, Phys. Rev. 138, B1566 (1965).» J. R. Klauder, Phys. Rev. Letters 15, 534 (1966).

'l1 R. Bonifacio, L. M. Narducci, and E. Montaldi, Phys. Rev.
Letters 16, 1125 (1966)."R. Bonifacio, L. M. Narducci, and E. Montaldi, Nuovo
Cimento 47, 890 (1967}."M. Lax and W. H. Louisell, J. Quantum Electron. QE3, 47
(1967)."M. M. Miller and E.A. Mishkin, Phys. Rev. 164, 1610 (1967).

by Wigner' and by Moyal. 4 We discuss this procedure
in Sec. IV. We show that the Wigner distribution W(n)
affords for the density operator an integral repre-
sentation' "' that is considerably more regular than
the P representation. In particular, we show that the
Wigner distribution is continuous and bounded, being
the expectation value of a Hermitian operator whose
eigenvalues are +2. The weight function P(n), by
contrast, may be exceedingly singular, being the ex-
pectation value of a Hermitian operator all of whose
eigenvalues are infinite.

In Sec. V we discuss a procedure' ' "for dealing with
operators written in antinormal order. In this procedure
the function corresponding to the weight function w(n)
in Eq. (1.2) is the function (n~ p~n), where ~n) is a
coherent state.

In Sec. VI we unify and relate the procedures dis-
cussed in Secs. III—V by using the parametrized
ordering convention introduced in I. We construct a
parametrized representation for the density operator
in which the weight function W(n, s) may be identified
with the function (n ~ p ~ u), with the Wigner distribution
W(n) and with the weight function P(n) when the
order parameter s assumes the values s= —1, 0, +1,
respectively. By varying the order parameter s in a
continuous way from s= —1 to s=+1, we observe an
orderly progression of changes in the mathematical
properties of this quasiprobability distribution. In this
way we are able to see when and how singularities
appear in the function W(n, s) and are thereby in a
better position to understand, in particular, why the
P representation does not exist for important classes
of density operators.

We illustrate in Sec. VII the results of the earlier
sections by means of several examples which are worked
out in detail. We use one of these examples to develop
a physical characterization of those density operators
for which the P representation is appropriate.

In Sec. VIII we show that the quasiprobability
distribution W(o.,s) satisfies a partial differential equa-
tion similar in form to the heat-diffusion equation.
This fact leads to an instructive analogy between the
function W(n, s) and a temperature distribution on an
infinite plane. Finding the function W(e, s) in terms of
the function W(a, t) for Res(Ret corresponds to
Poisson's solution for the heat-diffusion equation. The
inverse problem, of extending the function W(n, s) in
the other direction, corresponds to extending a terri-
perature distribution backwards in time, and this
problem is solved in Sec. IX.

In Sec. X we return to Eq. (1.2) and discuss the
extent to which any procedure for expressing ex-
pectation values in that form must resemble the general
procedure discussed in Sec. VI.

'6 U. I'ano, Rev. Mod. Phys. 29, 74 (1957)."B.R. Mollow, Phys. Rev. 162, 1256 {1967),"Y.Kano, J. Math. Phys. 6, 1913 (1965).
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G. ORDERED OPERATOR EXPANSIONS

The RnnlMatlon and cx'cRtlon opcl'Rtox's 8 Rnd Q~

may be dc6ned for any system that is described by a
single pair of Hermitian observables q and p, which are
canonically conjugate, [q,p]=sh. If we form the com-
plex linear combinations

expansion of the operator

=cxp (nat n—a+ ss l n l
s)

1$

( (at) eawa}

(2 7)

a= (2A)-'is{Xq+sX 'p—),
at= (2ls)—'ts(hq —sh 'P)

(2.1)
Since the operators D(n, 1) and D(n, —1) are the
normally and antinormally ordex'ed exponentia, ls

where X is an arbitrary real parameter, then the oper-
ators a and u~ obey the familiar commutation relation

D(n, 1)= exp(nat) exp( —n*a),
D(n, —1)=exp( —n*a) exp(nat),

(2.8)
(2.9)

(2 3)

A particularly useful complete set of states is the
coherent states ln) which are the eigenstates of the
operator u, i.e., for each complex number 0, we have

8 0 =0! Q

The basic properties of the coherent states and of the
unitary displacement operators

D(n) =exp(nat na), —
which generate them from the state l0) are described
in Secs. II and III of I.

The space of eigenvalues or the phase space for our
dynamical system is the in6nite plane of eigenvalues
(q'.,p') of the Hermitian observables q and p. An
equivalent phase space is the complex pla, ne of eigen-
values" n= (2trh) '(iraq'+8 'p') of the annihilation
operator a. As ln I, we make use, ln Integrating over
the complex plane, of the convenient differential
clement of area

tr—'d'n=tr —'d(Ren)d(Imn) = (2trh)-'dq'dP' (2.6)

which we see is also the familiar (dimensionless) element
of phase space.

In I @re examined the problem of representing Rn
arbitraxy operator P both as a power series in the
operators e Rnd a~ and. as an integral over various
complete and 'quasicomplete sets of operators. An
important device in oux' treatment was a parametri-
zation of thc usuRl ways of ordering opcI'Rtors RCCOI'ding
to which normal order, antinormal order, and. a type
of ordering that is symmetric in the operators a and e~
correspond to three discrete values of a continuous
order parameter s.

We de6ned the s-ordered products {(at)"a"},of the
operators (at)" and a" by means of a Taylor-series

's The coherent state (n) is not sn eigenstste of either g or p.
The quantities q' and p' in this expression may be interpreted as
the expectation values of q ag.d p in the state a).

(2.12)

wllcl'c tile coefficients f„, (s) are complex numbers.
We derived explicit formulas for the coe&cients f„(s)
RQd dc6ncd R type of convcI'gcQcc that ls Rpplopllatc
for the power series (2.12). For the case of normal
ordering, s= 1, we found the expansion (2.12) converges
according to this de6nition for an extremely broad class
of operators Ii. For Res&0 or, equivalently, for oxder-
ings closer to norxnal order than to antinormal oxder,
we showed that the coeKcients f„, (s) are 6nite for a
more restricted dass of operators E. These operators,
which we x'cfcl to Rs thc class of bounded operators,
are the ones for. which the Hilbcrt-Schmidt norm

ll~ll=[T {FtF)a ~ (2.13)
is Rnite. For such operators wc also showed that the
Power series (2.12) converges for Res) rs+ss(Ims)s,
i.c., fol ordcrings that Rrc closcx' to normal order than
to symmetric order.

For the case of antinormal ordering, s= —j., however,
and in fact throughout the half-plane Res&0, the co-
efficients f, (s) can and do develop singularities.
These singularities, which raise questions as to the
meaning of expansions such as Eq. (2.12), occur even
for operators P that are both bounded and in the tra, cc
class. Broadly speaking, the more negative the real
part of s the more restricted must be our interpretation

the normally and antinormally ordered products are
distinguished by the values s= &1:

{(at) sam} (at) sam (2.10)

{(at) mam} —am (at) n (2.11)
The operator {{at)"a~}scorresponding to the value
s=0, is the average of all ways of ordering the product
of n factors of u~ and m factors of u. %C have therefore
designated the type of ordering which emerges for
s= 0 as symmetric ordering.

In Secs. IV and V of I, we discussed the problem of
expanding an operator E as a power series in the s-
ordcrcd productsq l.e.) ln thc form
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of the expansion (2.12); this limitation is far more
restrictive for antinormal order, s= —1, than for sym-
metric order, s=0.

In Secs. VI—VIII of I we discussed a class of integral
expansions for operators. These expansions are based
upon the operators T(n, s) which we defined as the
complex Fourier transforms" of the operators D(n, s),

T(n, s) = D(&,s) exp(n&* n—*&)sr 'd'$ (2.14)

The expansions for an arbitrary operator F take the
form

F= f(n, —s)T(n, s)n. 'd'n (2.15)

f(n, —s)= P f„(s) (n*)"n .
n Ny=o

(2.17)

In other words, f(n, —s) is the same function of n and
n* as the s-ordered version. of Ii is of a and e~.

We may regard this identity of the coefBcients
f„(s) in the series (2.12) and (2.17) as defining, for
each value of the order parameter s, a one-to-one
correspondence between operators and functions. We
have referred to this correspondence between operators
F and their weight functions f(n, —s) as the corre-
spondence C(s). The rule of the correspondence C(s)

F++f(n, s)=Tr[-FT(—n, —s)j
(2.18)

is that the s-ordered product {(ctt)"tt },is associated
with the monomial (n*)"n™

{(ot) n,atm} ~ (nn) ~nba (2.19)

As in the case of the power series expansion (2.12),
the properties of the integral representation (2.15)
and of the weight function f(n, —s) depend critically
upon the order parameter s. In general for bounded
operators F the weight functions f(n, —s) are well-
behaved functions of o. for Res&0 but for Res(0 they
can develop singularities. These singularities are closely

~ This type of Fourier transformation, which diGers from the
usual one only by a change of scale, is delned by Eq. (I.3,1).

in which the weight function f(n, —s) is given by the
trace

f(n, s) =Tr[—FT(n, —s)]. (2.16)

An important property of these expansions is the close
relationship which exists between the operator F being
expanded and its weight function f(n, —s). The power-
series expansion of the weight function f(n, —s)
possesses the same coefficients f„(s) that occur in
the s-ordered power-series expansion (2.12) of the
operator Ii, i.e., we have

III. THE P REPRESENTATION
The utility of normal ordering has long been recog-

nized. It is used, for example, in the Dyson-Wick
expansion of the scattering matrix in quantum electro-
dynamics. "Because of the appropriateness of normally
ordered products for the description of photon absorp-
tion processes, normal ordering has had new appli-
cations, recently, in the interpretation of photon
counting and coherence experiments. 6 8 ~' The cor-
relation functions G&"' for the quantized Geld are
dehned, for example, as expectation values of normally
ordered products of the positive-frequency part of the
electric field operator E„&+&(x) and the negative-
frequency part E„& &(x). The nth-order correlation
function may be written as

G'"&(xt,xm, ,x,x~t, ,xg„)=Tr[pEt —&(g,)
E(-&(g„)E(+&(g~t).~ .E(+&(g~„)j (3 1)

where we have denoted 2n sets of space-time coordi-
nates as xj ~ x2„and have suppressed the vector
polarization indices of the Geld operators.

We have mentioned that the I' representation for the
density operator,

p= F(n) in)(nitfsn, (3.2)

affords a convenient way of evaluating the ensemble
averages of normally ordered operators. It has apart
from this important use a variety of additional appli-
cations'7'~" because of the elementary character of
the coherent states in). Among these applications is
the particularly simple form which it provides for a
quantum-mechanical analog' of the classical super-
position principle for the electromagnetic Geld.

We may use the I' representation to write the
expectation value of an arbitrary operator Ii as the

G. C. Wick, Phys. Rev. 80, 268 (1950).~ R. J. Glauber, Phys. Rev. 130, 2529 (1963).
'g R. J. Glauber, Phys. Letters 21, 650 (1966).
~4 B.R. Mollow and R.J. Glauber, Phys. Rev. 160, 1076 (1967);

160, 1097 (1967).
~' Y. R. Shen, Phys. Rev. 155, 921 (1967).
'6R. J. Glauber, in Proceediwgs of the Physics of Qgantgm

Electronics Conference, Son Jnan, Enerto Rico, &65, edited by
P. L. Kelly et cl. (McGraw-Hill Book Co., New York, 1966),
p. 788.

related to those that occur in the coefficients f„, (s)
of the power-series expansion (2.12). For according to
Eq. (2.17), the weight function f(n, —s) is a generating
function for the coefficients f, (s) W.hen this function
is inGnitely differentiable, then we may write the
operator F in the form

00 c&"+"f(n, —s))
(2 2o)

,~ aim~ c&(nn)nanna

which is another way of expressing the operator-
function correspondence C(s),
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integral

Tr(pF) = P (n) TrL ln){nlF]d'n

P(n)(nlF ln)d'n.

(3.3)
nm(gt)e g—m ln)(nl~ 1dtn(ot)n

The association of the function
Let us now suppose that the density operator p pos-

(3 4) sesses the antinormally ordered power series

with the operator F de6nes a particularly simple
correspondence between operators and functions.

Let us suppose that the operator Ii possesses a
normally ordered power series of the form

( 1)nm(ot) a

F g f (1){nt)num
A,~

It then follows from Eq. (3.9) that this density operator
also possesses the P representation {3.2) with the

(3 5) function

As we showed in I, such series exist and converge for
an extremely broad class of operators Ii, including all
that satisfy the condition (I.4.23). Now because of the
eigenvalue property of the coherent states, the function
f(n)=(nlFln) may be obtained from the operator F
by replacing the operators u and u in the series (3.5)
by their complex eigenvalues 0. and n*, so that we have

(3.6)

It is this function which occurs in the integral (3.3)
for the ensemble average of the operator Ii,

Tr(pF) = P(n) f(n, —1)d'n. (3.7)

Since the series (3.5) and (3.6), as was shown in I,
converge for virtuaBy aB operators of interest, this
expression is completely reliable provided that the I'
representation exists for the density operator p.

observe that, since all density operators are
Hermitian and of unit trace, the wright function P(n),
when it exists, can be chosen to be real and normalized
to unity,

1=Trp= P(n)d'n. (3.8)

Having de6ned the I' representation and touched
upon its usefulness, we shall now consider it from a
variety of viewpoints each of which reveals a way of
constructing the weight function P(n). All of these
ways show a certain lack of generality which rejects
the fact that the I' representation does not exist for
all density operators.

Let us note that by using the resolution of the
identity operator in terms of the coherent states, Eq.
(I.2.27), we may write the antinormally ordered

P(n)=tr-' Q p. (—1)(n*)"nm (3.11)

P(n) =tr ' Tr+T(n, 1)]. (3.13)
This trace is simply the expectation value of the
operator T(n, 1).

Let us recall that the operator T(n,s), defined by
Eq. (2.14), is Hermitian for real values of s, as shown
by Eq. (1.6.1"/) and is in the trace class for Res(0, as
shown by Eq. (I.6.32). According to Eq. (I.6.28), the
eigenvalues e (s) of the operator 2'(n, s) are independent

as its weight function. ' t4 The function P(n) js thus s
generating function for the coeKcients of the anti-
normally ordered power-series expansion (3.10) of the
density operator p. Equivalently, we may say that, the
correspondence that associates a density operator p
with its weight function P(n) is the one based upon
antinormal ordering, s= —j..

This correspondence does not, however, constitute a
general prescription for constructing the weight func-
tion P(n). For, as we have seen in Secs. IV and V of I,
the coefficients f ( 1) of anti—normally ordered.
power-series expansions are sometimes singular, even
for operators that are both bounded and in the trace
class.

As another approach to finding the function P(n)
let us note that the function f(n, —s) associated with
an arbitrary operator F by the correspondence C(s)
based upon s-ordering is in general given by Eq. (2.18)
as the trace

f(n, —s) =Trl FT(n, —s)]. (3.12)
Since all density operators are both bounded and in
the trace class, there is no intrinsic diQiculty in ap-
plying this relation to an arbitrary density operator,
F=p. If, therefore, we set s= —1, corresponding to
antinormal ordering, then we may write the weight
function P(n) as the trace
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of o, and are given by
2 (s+1

e.(s)=
1—sos —1) (3.14)

of the operator T(n, s) into Eq. (3.15), we may express
the function P(n) in terms of the limiting process

P(n) =x ' lim exp(np —n*))Tr[pD(),s)]d'$. (3.19)
We see that they are all infinite for s= i.

The fact that the function P(n) is the expectation
value of a Hermitian operator T(n, 1) all of whose
eigenvalues e„(1)are infinite is related to the occurrence
of singularities in the coefficients p„(—1) of the anti-
normally ordered power series (3.10) for the density
operator p. Furthermore, it sheds some light on why
the weight function P(n) is, for certain classes of
density operators, exceedingly singular. "

We shall provide a fuller discussion of these singu-
larities at the end of this section and also in Secs. VI
and VII in which we mak. e use of the continuous order
parameter s. For the present let us merely note that
Eq. (3.13) is not well defined as it stands. It may be
made meaningful for a broad class of density operators
p if we use a limiting process in which the order param-
eter s approaches one along the real axis from smaller
values, i.e. ,

P(n) =gr ' lim TrLpT(n, s)].

I.et us now define the normally ordered characteristic
function X~(g) as the expectation value"

x~(k) =»l:p»(8, 1)]
=Trl p exp(Pat) exp( —Pa)]. (3.20)

For many density operators p the function X&(])
possesses a complex Fourier transform"; and, when
that is the case, the limiting process (3.19) is unneces-
sary. For these density operators the weight function
P(n) is the complex Fourier transform of the normally
ordered characteristic function"

P(n) =7r ' exp(nP n*f)—x~($)d'$ (3.21)

and by using Eqs. (1.3.4) and (I.3.5) we find as the
inverse relation

Let us recall that, according to Eq. (I.6.29), the
operator T(n, s) is for s= —1 simply the projection
operator upon the coherent state

l n),

X~(k) = «p(hn* k*n)P(n—)d'n (3.22)

(3.16)

We may thus write the P representation in the form

p= P(n)T(n, —1)d'n. (3.17)

Tr(pF)

We note that this expansion conforms to Eqs. (2.15)
and (2.16) when the weight function P(n) is given by
Eq. (3.13). If we now multiply both sides of the
expansion (3.17) by an arbitrary operator F and form
the trace of the resulting expression, then we arrive at
the relation

For other density operators, the limiting process (3.19)
typically leads to a generalized function that is too
singular to be used as a weight function for the P
representation. '~ For the case of pure states, for
example, it has been shown" that the function P(n)
is always singular and that it is a tempered distribution
only when the state may be expressed as a linear
combination of a finite number of the states (at)" ln)
for a single, arbitrary value of o,.

We have seen that the P representation provides
for the ensemble averages of the normally ordered
products (at) "u the simple expression (1.3). Let us
now observe that by using Eq. (I.5.14) for example we
may use the P representation to write the ensemble
averages of the symmetrically and antinormally ordered
products in the forms

Tr+T(n, 1)]Tr[FT(n, —1)]x 'd'n, (3.18) TrLp((at)~a~)0]=rit2 —~ n~—nl (m—m)( 2lnlp)

where we have used Eq. (3.13) for P(n). In this
integral for the quantity Tr(pF) the order parameter s
occurs twice, as s=+i and as s= —i, in accordance
with the occurrence of both s and —s in the general
relation (2.15).

We shall now derive what is perhaps the simplest
way of constructing the weight function P(n) when
it is nonsingular. By substituting our definition (2.14)

XP(n)d2n (3.23)
' K. E. Cahill (to be published). It is shown there that it ispossible to regularize the I' representation sp as to accommodate

such generalized functions but only at the expense pf adding tpit three two-dimensional integrals over outer products pf npnidentical coherent states. This regularized I' representation existswith four nonsingular weight functions for all density operators p.Only when the three supplementary weight functions can be set
equal to zero, however, does the I' representatipn exist.K. E. Cahill (to be published).
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Tr[pa~(gt)"j=e! n~ "I. " "I(—Ial')

XP(n)IPn, (3.24)

Where L„t"&(g) is an associated Laguerre polynomial. "
IV. WIGNER MSTMBUTION

In this section we discuss a representation for the
density operator that is particularly suited for the
averaging of operators written in symmetric order.
This representation exists for all density operators and
aGords a way of expressing the expectation value of
every bounded operator as a convergent integral. The
weight function of this representation is the quasi-
pl obabll. lty distrlbutlon function 1ntroduced by
Wigner. ' Our discussion will begin with the displace-
ment-operator expansion in which operators are
expressed in a form that is implicitly symmetric in the
operators a and u~.

%e have seen in Sec. III of I that the displacement
operators D(n) form a complete set of operators. They
aGord for every operator Ii that is bounded in the sense
of Eq. (2.13) an expansion of the form

(4.3), that the function X($) uniquely determines the
density operator p.

Since the displacement operator D($) is unitary for
all $ and unity for )=0, the characteristic function X($),
which is its expectation value, must satisfy the con-
d1tlons

lx(~) I&1, x(0)=1. (4 6)

The boundedness condition on X(&) contrasts sharply
with the growth condition that applies to the normally
ordered cllal'Rctcl'Istic function x~($). If wc coIIlpRI'6
tllc dcfinltlons (3.20) Rlld (4.4) wl'tll Eq. (I.2.14), 'tllell
we may deduce from the condition (4.6) that the
function X&($) must obey the growth condition

I x&(g) I

The possibility of such exponential growth at large
values of I pl ls the reason why the function X~(g) does
not naturally possess a Fourier transform, even one
that is a tempered distribution.

In the case of the characteristic function X($), how-
ever, which is both bounded and square-integrable,
we encounter no difhculty in dining its complex
Fourier transform as

~= f(~)D-'(~)='d'~, (4.1) W(n) = exp(aP —n*))x($)Ir IIf'$. (4.8)

in which the we1ght funct1on

f(~) =T P'D(~) j (4.2)

is unique and square-integrable. Thus since every
density operator is bounded, we may write an arbitrary
density operator in the form

This function divers only in normalization from the
distribution W(g', p') introduced by Wigncr' as a
quantum-mechanical analog of the phase-space dis-
tribution of classical statistical mechanics. By using
the Fourier inversion relations (I.3.4) and (I.3.5), we
may express the function X{))in terms of the Wigner
function as

~= x(~)D-'(c) -'d'~ (4.3) X($)= CXp()a*—Pa)W(n)n. Id'a. (4.9)

Ix(() I'n.-ld'$= Trp'&1, (4 5)

where the wright function X($) is given by the trace

X(~)=T L.D(~)j (4 4)

which is the expectation value of the displacement
operator D($). This relation is the familiar definition
of the characteristic function, as contrasted with the
normally ord.ered form considered in Sec. III. It plays
a role in quantum-statistical theory analogous to that
of the characteristic function of classical probability
theory. According to Eq. (I.3.14) we have

p= W(n)T(n, 0)Ir 'd'n. (4.10)

The Wlgner functioll W(n) is therefore a weight fuilc-
tion for the expansion of the density operator in terms
of 'tllc opela'tols T(n,O) which, Rccol'dlllg to Eq. (I.6.23),
are given by

If we now substitute this expression for the character-
istic function into the expansion. (4.3) and use the
definltlon (2.14) of 'tllc opcl'Rtol' T(n, 0), wc Rrl'Ivc Rt 'tile
representation2 "'~

which shows that the characteristic function X($) is
always square-integrable. It is clear from the expansion

29K. Magnus and F. Oberhettinger, Iiormglas and Theorems
for the Fggctjols of MathemaA'cat I'hysics (Chelsea Publishing
Co., New York, 1954), p. 85.

r(,O)=2D( )(—1) t'D-( ).
By writing Eq. (4.8) in the form

W(n) =Tr 1 CXp(np —ap)D(~) -Idmp,

(4.11)
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and using the definition (2.14), we find that the Wigner
distribution is the expectation value of the operator
T(n,0):

W(n) =TrLpT(rr, 0)j. (4.12)

S111cc tllc opel'R'tol' T(n,0) 18 Hel'1111'tlRn, as sllowI1 by
Eq. (4.11), tile Wlgncr flinc'tloll W(n) 18 I'cRl-valued,

W(n) = W(n)* {4.13)
Wc mentloncd ln I tbRt both the displaccQMQt operato~
D(a) and the operators T(n,s) for Res&0 have the
plopcl'ty that lf V ls Rny tI'acc clRss opcrRtox' then thc
function Trg'D(n) t and Tr/V'T(n, s)g are uniformly
continuous functions of 0.. Thus, since every density
operator is in the trace class, both the characteristic
function X(() and the Vhgner function W{ct) are uni-
formly continuous functions of a. By using Eq. (4.5)
and (13.6), we find

VI that this property of the Wigncr distribution is a
consequence of the fact that the real part of the order
parameter is zero.

In Scc. VH of I wc Doted that the correspondence
between operators and functions C(0) based upon
symmetric ordering s=o is the same as the Acyl
correspondence, " Eqs. (I.'?.30) and (I./.31). By com-
paring Eqs. (4.12) and (4.16) with Eq. (2.18), we see
that it is this correspondencc which associates the
functions W(a) and f(n, O) with the operators p and F.
Thus if the operators p. and Ii possess the syrmnetri-
cally' ordered pow'cr-series expansions

(4.19)

(4.20)

i W(n) i'Ir Id'n= Trp'&1, (4 14) then the functions W(o) and f(n 0) are given by

which shows that the signer distribution is R square-
integrable function of e for all density operators p,

The Hermitian operators T(a,0) possess the same and
type of completeness as do the unitary operators D(n).
For, according to Eqs. (2.15) and (2.16), we may
expand any bounded operator Il in the form

(4.22}

F= f(a,0}T(n,0)s. Id'n,

where the weight function f(n, 0), which is given by
the tX'RCC

f(ct,0)=TrLF T(tr,0)j, (4.16)
is. unique Rnd square-integrable. YVc sec froxn Kq.
(I.'/. 25) that this function satisfies the relation

i f(a,O) i'Ir Id'rr =Tr(FIF) . '

This relation is identical in content to the relation
(I.3.14), which characterizes the completeness property
of thc dlsplacclllcll't opera tors. Tile cxpa1181011 (4.10)
for the density operator and the relations (4.12) and
(4.14) al'c 8, speclRl case of Eqs. (4.15)-(4.17).

Lct us Qow note that by using either of the expansions
(4.10) and (4.15) we may write the expectation value
of Rny bounded opex'RtoI' E 1Q the form

The functions W(n) and f(n,0) ms, y be thought of as
gcxlcx'Rtlng functions for thc coeKcicnts of thc sym-
mctl'ically ordered power-series cxpaDslons of the
opcx'atox's p Rnd P. It ls a uDlquc pI'opcl'ty of thc signer
distribution, among all the distribution functions
considered in this paper, that in the integral (4.18)
for the ensemble average Tr{pF) both the function
W(n) representing the density operator and the func-
tion f(o.,0) representing the operator F are associated
gath thclI' lcspcctlvc opcx'RtoI's p RDd F by thc same
corr esp ondcncc.

The integral expression (4.18) for the expectation
value Tr{pF) becomes particularly simple when the
opclatox' I' ls written ln sy~ctric order. Thc cx-
pcctatloD value of thc symmetrically ordered pl'oduct
{(ot)"o~}s, fol' cxRlllple, 18 glvcll by 'tile llltcgral

TrLp{ (o') "0"}sj= W{n)(n*)"a"s-Id'n (4 23)

ThI'cc simple llhlstI'Rtlons of this relation RI'c

Tr(pp) = W(e) f(ct,0)Ir-td'n. (4.18) -', (ate+cot) = err i'W(e)Ir-Id'n, (4.24)

We may conclude from the Schw'arz inequality for
functions (I.3.9) that this integral converges for all
bounded operators Ii and. all density operators p since,
for such operators, the functions f(n,0) and W(n) are
both squaxe-integrablc. It veil become evident in Sec.

xs{uta'+acta+a'ut) = n*a'W(rr)s. -tdtrr, (4.25)

808. %'eyI, The Theory of GrouPs aery Quugtum 3Aehugks
(Dover Publications, Inc., New York, 1NO), pp. 2?2-2'M.
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and

Tr(p) =1= W(n)n'. d'n (4.26)

where L„(x) is a Laguerre polynomial. " Since half of
the eigenvalues of the operator T(n,0) are negative,
the Wigner function often assumes negative values as
is illustrated by

which shows that the Wigner function is normalized.
By using Eq. (I.5.14) we may express the ensemble

averages of the normally and antinormally ordered
products in terms of the Wigner distribution as the
integrals

TrL (at) nam j—n!( 1)n nm —nL (m n) (2—
i
n

i
2)

W (0)=2(—1)". (4.39)
Among the functions P(n), W(n), and (ni pin), only
the last, which we discuss in Sec. V, is positive definite
for all density operators.

By using Eqs. (4.36) and (4.11), we may write the
Wigner distribution in the following additional forms:

and
XW(n)m 'd n (4.27) W(n)=2 P (—1)"(nipD(2n) in)

n=O
(4.40)

A number of properties of the Wigner distribution
follow directly from the explicit form of the operator
T(n,0) given by Eq. (4.11). The eigenvalues e (0) of
this Hermitian operator are 2(—1)". It follows then
from Eq. (4.12) that the Wigner function, being the
expectation value of T(n, 0), is bounded according to
the inequalities

(4.29)—2& W(n) &2

for all density operators.
The operator (—1) t =exp(Grata) is a reflection

operator in the sense indicated by the relations

exp(i7rata)a exp( i7rata—) —a=
exp(i~ata)at exp( i7rata—) = —at,

(4.30)

(4.31)
which imply that it also reflects the Hermitian oper-
ators q and p. By applying these relations to the dis-
placement operator D(n) we find

exp(i~ata)D(n) exp( —ixata) =D '(n), (4.32)

TrLpam(at) "]=n!(-,')n n" "Lnr" "&(—2ini')
XW(n)~-'d'n. (4.28)

=2 Tri D—'(n)pD(n) exp(i~ata) j (4.41)

=2 Z (—I)"(»ID '( )pD( ) I»). (442)
n=o

The last two forms make clear that the dependence of
the Wigner function W(n) upon. the variable n is related
to a unitary transformation of the density operator by
the displacement operator D(n). By applying Eq.
(I.6.18) to Eq. (3.13), we may similarly interpret the
n dependence of the weight function P(n) of the P
representation.

V. THE FUNCTION (niacin)
In Secs. III and IV we considered distribution

functions that are useful for ending the expectation
values of operators written in normal or symmetric
order. We turn now to a function that may be used to
express the ensemble averages of antinormally ordered
operators as simple integrals.

I.et us suppose that the operator F possesses the
antinormally ordered power-series expansion

so that we have P—Q f ( 1)am(at) n (5 1)
T(n,0)= 2D(2n) exp(ix.ata) (4.33)

= 2 exp(i~ata)D-'(2n) . (4.34)
Then by proceeding as in Eqs. (3.9)—(3.11), we may
write the operator F in the form

By multiplying together these two forms for T(n, 0),
we find

LT(n, 0)j'=4. (4.35)

By using Eq. (4.33) we may write the Wigner
function as

f(n, 1) in)(ni x-'d'

where the function f(n, 1) is given by

(5.2)

W(n) = 2 TrLpD(2n) exp(ixara)$, (4.36)

which, for a state of precisely n quanta, i.e., p= i n)(n i,
is simply

W„(n)=2(—1)"(niD(2n)in). (4.37)

By referring to the explicit form (I.3.30) for this matrix
element, we Gnd

W„(n)=2(—1)"L„(4ini') exp( —2ini') (438)

f(n 1)—Q f ( 1)(nm)nnm
n, 9%=4

(5 3)

By referring to Eq. (2.18), we see that this function
may be expressed in terms of the operator T(n, l.) as
the trace

f(n, 1)=TrtFT(n, 1)j. (5 4)
The appearance within this trace of the operator T(n, 1)
all of whose eigenvalues are infinite reflects the fact
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that antinormally ordered power series do not exist
for all operators F.

We may use the expansion (5.2) to write the expecta-
tion value of the operator F in the form

Tr(pF) = f(n, 1) Tr[p~a)(n~]~ 'd'n (5.5)

f( n1)( nips n) x-'d'n (5 6)

Thus the function (n
~ p ~a) has for antinormally ordered

operators the useful property''" exhibited in Eqs.
(3.7) and (4.18) by the functions P(n) and W(n) for
the cases of normally and symmetrically ordered
operators.

The function (u~ p~n) clearly is non-negative and
bounded according to the relation

Its normalization,
0«n) pin)(1. (5.7)

(5 8)

Tr(pF) = Tr[FT(u, l) jTr[pT(a~ 1)jx 'd'a (5 10)

If we now contrast this relation with its counterpart
(3.18) for the case of the P representation, we see that
the roles of the operators T(n, 1) and T(n, —1) have
been interchanged. In the corresponding relation for
the case of the Wigner distribution, Kq. (4.18), both
T(n, —1) and the singular operator T(n, 1) are replaced
by T(n,0) whose eigenvalues are &2. For this reason
only the Wigner function of the three quasiprobability
distributions considered thus far may be used to write
the ensemble averages of all bounded operators as
convergent integrals.

We now note the very limited sense in which the
function (n~ p~n) is a weight function for the density
operator. By using Eqs. (5.9), (2.15) and (2.16) we
may formally express the density operator as the
integral

evident from Eq. (I.2.28). By recalling that the
operator T(n, —1) is a projection operator upon the
coherent state ~n), as shown by Eq. (3.16), we may
write the function (n~ p~ n) in the form

(n~ p~n)= Tr[pT(u, —1)j. (5.9)
This relation is the analog for antinormal order, s= —1,
of Eqs. (3.13) and (4.12) for the functions P(n) and
W(u).

By using Eqs. (5.4) and (5.9) we may write Kq.
(5.6) in the form

The appearance in this expansion of the singular oper-
ator T(n, 1) may be interpreted in terms of the proper-
ties of the function (n ~ p ~n). As we have noted, this
function is bounded, non;negative, and normalized. It
is also an infinitely differentiable function, as may be
seen by using Eq. (I.2.23) to expand the coherent
states ~n) and (n~ in powers of n and a~. The function
(a~p~a) thus has all the properties that one would
expect of the smoothest classical probability distri-
bution. The expansion (5.11) therefore suggests the
interpretation that only so singular an operator as
T(n, 1) can be used to construct arbitrary density
operators when weighted with so well behaved a weight
function as (n~p~n). The opposite interpretation evi-
dently applies to the E' representation, in which the
roles of the operators T(n, 1) and T(u, —1)= ~n)(u~
are interchanged. It appears, then, that the non-
existence of the P representation for certain density
operators is a consequence of the extreme "smoothness"
of the coherent state projection operator

~
n)(a

~
.

In analogy with Kqs. (3.20) and (4.4), let us define
the antinormally ordered characteristic function XA($)
as the expectation value

x.(&)=»[pD(&, —1)j
=Tr[p exp( —Pu) exp((at)g. (5.12)

xA(k) = exp(kn* —Pn)(a
~ p jn)x 'd'u, (5.15)

which shows that the function XA(() is the complex
Fourier transform of the function (n~ p~n). By means
of Eq. (I.3.4) and (I.3.5) we obtain the inverse relation

(n
~ p ~

n) = exp(nP —n*&)xA ($)~ 'd'&. (5.16)

As a simple illustration of Kq. (5.6), we note that the
expectation values of the antinormally ordered products
can be written in the form

By using Eqs. (2.7)—(2.9) we see that the characteristic
functions X~($), X($), and XA($) stand in the simple
relationship

x~(k) =~ ' "'x(k) =~ 'xA(k) (5 13)

Since, as we noted in Sec. IU, the function X($) is a
continuous function of $, it follows that all three
characteristic functions are continuous. We see from
Eq. (4.6) that the modulus of the antinormally ordered
characteristic function XA($) is bounded by

i xA(p) i
(g-141~/2 (5.14)

If we use Eq. (5.6) to evaluate the antinormally
ordered expectation value (5.12), then we find

p= (n ~ pin)T(u, 1)x-'d'n. (5.11) Tr[pu (at)"j= (n*)"n (n~pjn)ir 'd2n. (5.17)



1892 K. E. CAH I LL AN D R. J . .GLAU BE R

(5.25)

The function (nl pin) may also be used to evaluate the which has been called the R representation. The rela-
mean values of normally and symmetrically ordered tionship between the functions R(n*,p) and (nl pin) is
products. By using Eq. (I.5.14) we may write them as given by
the integrals (nl pin)=e I I'R(n",n).

Te[ip(n&) o $= (—1)~+I o~-~1„(~—~) (lnl &)

and
X(nl p ln)~-'d'n (5.1g)

Tr[p{(at)"a jo]= (—oi)"rit n "I.„( "I(2

X (nl pin)~-'d n. (5.19)

(5.20)

In Sec. IV of I we showed that normally ordered
power series exist and converge for virtually all oper-
ators of interest, i.e., for those that satisfy the condition
(I.4.23). In particular, every density operator p pos-
sesses the expansion

VI. ENSEMBLE AVERAGES AND 8 ORDERING

In the present section we draw together the results
of the Secs. III—V by making use of the parametrized
ordering conven'Cion introduced in I.We define a general
representation for the density operator in which the
weight function W(n, s) may be identified with the
weight functions (nlpln), W(n), and P(n) when the
order parameter s assumes the values s= —1, 0, and
+1, respectively. In characterizing the behavior of
the function W(n, s) we will see the unfolding of an
orderly progression of mathematical properties as the
parameter s is advanced from s= —1 corresponding to
the function (nl pin) to s=+1 corresponding to the
function P(n).

In I we introduced for every bounded operator Ii the
representation

F= f(n, s)T(n,—s)7r 'd'n (6.1)
and by using the eigenvalue property of the coherent
states we find

(nl pin)= 2 p-.-(1)(n*)"o".n~ (5.21)

Thus the function (nlpln) is the one associated with
the density operator p by the correspondence C(1)
based upon normal ordering. Equivalently, the function
(nl pin) is a generating function for the coeflicients of
the normally ordered power-series expansion of the
density operator. The convergence of the series (5.20)
and (5.21) is consistent with the fact, mentioned earlier,
that the function (nlpln) is infinitely differentiable.
We note that Eqs. (5.20) and (5.21) correspond to
Eqs. (3.10) and (3.11) for the weight function P(n)
and to Eqs. (4.19) and (4.21) for the Wigner distri-
bution W(n).

Let us now define the function R(n*,p) by the
relation'

in which the weight function f(n, —s) is given by
f(n, —s)= Tr[FT(n, —s)]. (6.2)

The operator F and its weight function f(n, —s) are
associated by the correspondence C(s) which is based
upon the power-series expansions

F= 2 f„,„(s) {(a')"a"}, (6.3)

and

(6.4)

By multiplying both sides of the expansion (6.1) by
an arbitrary density operator p and forming the trace
of the resulting relation we 6nd

R((P P) —e(I I +Iel i'lo(nl p lP) (5.22) Tr(pF) = f(n, —s) Tr[pT(n, s)js. 'd'n. (6.5)

The function R(no, P) is an entire function of the two
complex variables n~ and P. By twice using Eq. (1.2.27),
we may write the density operator in the form

Let us introduce the function W(n, s) as the expectation
value of the operator T(n, s),

W(n, s) =Tr[pT(n, s)j. (6.6)
p= ln)(pl (nl pl p)~ odondop- (5.23) This function permits us to express the expectation

value of the operator Ii as the integral

The function R(n"P) therefore affords for every density
operator p the two-variable representation Tr(pF) = f(n, s)W(n, s)7r 'd'—n, (6.7)

ln)(plR(n*p)e —(I Io+IeI&&Is~-odondop (524) in which F is represented by the function f(n, —s)
associated with it by the correspondence C(s).
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p= W(n, s)T(n, —s)x 'd'n. (6.8)

By referring to Eqs. (6.1) and (6.2) we find that the
function W(n, s) is also the weight function for the
density operator p in the expansion

(n ~ p~n), W(n), and P(n) are given by

pin) e '--ei

W(n) =2e—'~~e~',
(6.15)

(6.16)

(6.17)

This relation, we note, a6ords an alternative way of
deriving the integral expression (6.7) for the ensemble
average TrLpP].

By comparing the definition (6.6) with Eqs. (3.13),
(4.12), and (5.9) we may identify the function W(n, s)
for s= —1, 0, and +1 with the functions (n~ p~ )n,

W(n), and m.P (n), respectively:

(nippon)=W(n, —1),
W(n) = W(n, 0),
P(n)=~ 'W(n 1)

(6.9)

(6.10)

(6.11)

p= Q p, ( s){(a)"a )—
n,~ (6.12)

If in Eqs. (6.7) and (6.8) we let s= —1, 0, +1, we then
obtain, respectively, Kqs. (5.6) and (5.11) for the case
of the function (n~ p~n), Eqs. (4.18) and (4.10) for the
case of the Wigner distribution W(n), and Eqs. (3.3)
and (3.2) for the case of the P representation.

By comparing the definition (6.6) with Eqs. (6.3)
and (6.4), we see that the function W(n, s) and the
density operator p are related by the correspondence
C(—s):

»Ip{(n")"n") ]= ( *)" "W(n, s) 'd'n (619)

This expression is a generalization to arbitrary s of
Eqs. (5.17), (4.23), and (1.3) which apply for s= —1,
0, +1, respectively. By setting x=m=0 in this rela-
tion, we find, as the normalization condition for W(n, s),

1=Trp= W(n, s)s 'd'n (6.20)

The expectation value of the s-ordered displacement
operator D($,s) may be obtained from Eqs. (1.7.11)
and (6.7) as the integral

where the last expression is obtained by using the
limiting process (3.15) for P(n).

By using Eq. (I.6.16) we find

W(n, s*)= W(n, s)*, (6.18)

which shows that the function W(n, s) is real for real
values of s. By using either the general expression (6.7)
or the relation (I.6.45), we may write the expectation
values of the s-ordered products as the integrals

W(n, s) = P p„,„(—s)(n*)"n".
n, tn=o

(6.13)
Tr[pD((,s)]= e&»* &*»W(n,s)m. 'd'n (6.21)

Thus in the integral (6.7) for the ensemble average
TrLpF] the functions f(n, —s) and W(n, s) bear to the
operator F and p the relationships C(s) and C(—s),
respectively. If in Eqs. (6.12) and (6.13) we put
s= —1, 0, +1, then we may recover the earlier relations
(5.20), (5.21), (4.19), (4.21), (3.10), and (3.11), which
obtain for normal, symmetric, and antinormal ordering.

A simple illustration of the weight function W(n, s)
is provided by the density operator for a pure coherent
state, p= ~P)(P~. According to the definition (6.6) the
function W(n, s) is given by the matrix element

W(n, s) = (P i T(n, s) i P),

X(&,s) = e&" &"W(n,s)7r '-d'n, -(6.23)

and by referring to Kqs. (I.3.4) and (I.3.5) we find as
the inverse relation

Let us define what we may call the s-ordered character-
istic function X(),s) by the relation

X(&,s) =»L~D(k, s)]=e""'X(0) (6 22)

where X($) is the characteristic function introduced in
Sec. IV. We see from Eq. (6.21) that it is the complex
Fourier transform of the function W(n, s),

which is evaluated in Eq. (I.6.36). By using that result
we find W(n, s) = e &* »*&X(p,s)m

—'d'g. (6.24)

W(n, s) =
1—$

(6.14)

which shows that the function W(n, s) has an essential
singularity at s=1 and is for Res&1 a Gaussian ex-
ponential with a maximum at n=P By referr. ing to
Eqs. (6.9)—(6.11) we see that the weight functions

These Fourier transform relations generalize to arbi-
trary s the earlier relations (5.15) and (5.16), (4.8)
and (4.9), and (3.21) and (3.22), which are realized
when s = —1, 0, +1.

We noted in Sec. IV that the function X($) is a
uniformly continuous function that is bounded by
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gn+mx(g s)
TrL p( (+t) n+m} j-

gpg ( p)m
(626)

According to Eq. (I.6.28) the eigenvalues e„(s) of
the operator T(n, s) are given by

(6.27)

%e note that they are all positive and less than unity
for s real and (—1, with the limiting values e„(—1)
= h„,o. Thus the function W(n, s), being the expectation
value of T(a,s), satisfies the inequality

0& W(u, s) &2/(1 —s) (6.28)

for s real and & —1. By examining eo(s) and ei(s) we
see, furthermore, that the full set of eigenvalues is not
positive unless s is real and & —1.The function W(n, s)
is therefore positive definite for all density operators
only when s is real and & —1.

Since every density operator is in the trace class,
we know from the analysis of Sec. VII of I that the
function W(n, s) is a uniformly continuous function of
n for Res&0. By using Eq. (I.7.43) and the fact that
Trp=1, we find that the modulus of the function
W(n, s) is bounded by

[W(~,s) [&2/f1 —sf (6.29)
for Res&0.

Since every density operator is a bounded operator,
we may obtain from Eq. (I.7.38) the relation

unity. The function x(P,s) is therefore a continuous
function of $ and, of course, an entire function of s.
It is bounded by

~
x($,s) [ «xp(-', Res

~
$~'). (6.25)

By using Eqs. (6.19) and (6.22), we easily find the
relation

ferentiable for Res(x(p), but not for larger values of
Res. Our examples in Sec. VII will show that the
quantity x(p) is arbitrarily small for certain classes of
denisty operators. The function W(n, s) typically has a
singularity of some sort on the line Res=x(p) and be-
yond that singularity it lies outside the class of tempered
distributions. ' In Sec. III we mentioned the result that
the weight function P(a) of the P representation is
singular for all pure states. Thus for such density
operators the quantity x(p) lies in the interval

0&x(p) &1. (6.31)

The dependence of the function W(n, s) upon the
parameter s is expressed by the convolution law
(I.7.32), according to which we have

W(n, s) =
t—s

2~~—P ~' d'P
exp— W (P,t) (6.32)

t—s 7r

W(~)=2 e-'i=eiV(P)d2P (6.33)

for Res& Ret. This Gaussian convolution tends to
smooth out any unruly behavior of the function W(P, t).
It shows clearly why the quasiprobability distribution
W(n, s) becomes progressively better behaved as Res
decreases. We note also from Eq. (6.32) that the
function W(n, s) obeys a second-order partial differential
equation analogous to the heat-diGusion equation. This
property leads to an instructive analogy which we take
up in Sec. IX.

The convolution law (6.32) provides us with a
number of integral relations between the functions
considered in Secs. III—V. If we assume that the I'
representation exists for the density operator p, then
by letting t=+1, and s=0 and —1 we may express
the Wigner function W(a) and the function (n~p~n)
as the integrals'

1)Trp'&
~
W(n, s)

~

'm'd'n. (6.30)
(n

~ p ~~)= e-~.-e~V'(P)d'P. (6.34)

for Res&0, in which the first and second inequalities
are equalities only when the density operator repre-
sents a pure state and when Res=0, respectively. From
the analysis of Sec. VII of I we may assert further that
the function W(n, s) is analytic in s and infinitely
diGerentiable with respect to o. and o.* throughout the
half-plane Res(0. The function W(n, s) may be rep-
resented by a power series' in the variables s, 0,, and
n* for Res(0.

As the line Res=0 is crossed, however, the function
W(n, s) retains, in general, none of the properties which
we have observed in the half-plane Res& 0. As we noted
in Sec. VII of I, for each density operator p there is a
non-negative number x(p) such that the function
W(u, s) remains square-integrable and infinitely dif-

Similarly, since the Wigner function W(cx) exists for
all density operators p, we have in general the relation'

(nippon)=2 e '" e'W(n)x 'd'P (6.35)

I.et us now suppose that we wish to find the ensemble
average of the s-ordered product ((at) "a"},but that
we know only the function W(n, t) and not the function
W(n, s) or, alternatively, that the function W(n, s) is
too singular for the relation (6.19) to apply. We may
in such a case use the relations (I.5.13) and (I.5.14)
to express the s-ordered product in terms of t-ordered
products and so obtain the desired expectation value
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as the integrals

t s)—
Tr[p((ut)nu") ] m'

l
(ne)~ ~

2i
t'2lul'

, L ( )l W(ut)w d2n (6.36)
ks t—

=nt n™n

the density operator T(p, t) in the suggestive form

T(v, t) =(1—' ') e p[—P&(7)l,
where

&(V) =D(V)u'u& '(V)
=u'o vu—' v*—u+ l v l'

(7.5)

(7.6)

(7 7)

2lnl'
XL '" "' W(n, t)x 'd'u. (6.37)

s—t

VII. EXAMPLES OF THE GENERAL QUASI-
PROBABILITY FUNCTION W(n, s)

We now illustrate the results of the preceding sections
by constructing the function W(n, s) for some simple
density operators and by using it to evaluate the
ensemble averages of a variety of observables. We have
shown in Sec. VI that the function W(u, s) is a well-
behaved function of both n and s when the real part of
s is negative. The examples of the present section will
verify this behavior and will illustrate some of the
singularities that occur for Res&0.

By referring to Eqs. (I.6.17), (6.27), and (1.6.38),
we see that for t real and & —1 each operator T(y,t)
is Hermitian, positive definite, and of unit trace. The
operators T(y,t), which we have introduced for other
purposes, therefore form for t& —1 a two-parameter
family of density operators.

This family of density operators in fact describes a
broad class of physically important fields. For t= —1
the operator T(y, —1) describes a coherent field of
amplitude y,

T(~, —1)= lv)&~l, (7.1)

1 t' &e)
T(O, t

(e)+1 ~ k&e)+1
(7 2)

in which the mean number of quanta (e) is given by

(I)= ——,'(t+1). (7.3)

The operator T(p, t), regarded as a density operator,
describes more generally the 6eld that results from the
superposition of a coherent signal of amplitude y,

T(&,t) =D(&)T(o,t)n-'(&), (7 4)

upon a chaotic Geld with a mean member of quanta
&e)= ——', (t+1). By using Eq. (I.6.25) we may write

as is shown by Eq. (I.6.29). According to Eq. (I.6.26)
it characterizes at the other extreme, when y=0 and
t& —1, the general chaotic 6eld'

For t& —1 the parameter t' is real and positive with
the limiting value of P=" for t= —1. The operator
(7.5) for y=0 is of the type which describes the thermal
equilibrium state of an electromagnetic 6eld mode. If
this state is exposed to the radiation from a prescribed,
c-number current distribution then the appropriate
density operator" is given by Eq. (7.5), with y"0.

By using Eq. (I.6.39) we may obtain the function
W(n, s) for the density operator T(p, t) as the trace

W(n, s) = Tr[T(y, t)T(n, s)j
(2'-y')

expl
t+s 5 t+s

2&m)+1 —s

The weight function P(n) of the P representation, the
Wigner distribution W(n), and the function W(u, —1)
correspond to the values s=1, 0, —1 and are given
by

1 ln —yl'
W(n, i) =mP(n) = exp-

(') &e)

1 ( lnyl'
W(n, o) =W(n) = expl-

n 2 n 2

1
W(, -1)=& lpl )= 'p —

I
(711)

(n)+1 (e)+1 i

(7.9)

x(p) = —t=2(e)+1&1. (7.12)

The function W(n, s) is a tempered distribution on the
line Res=x(p) but not for larger values of Res, where
it increases as an exponential function of ln —yl'.

The family of density operators T(y,t) provides a
physical characterization of the fields which may be
described by means of the P representation. For if p
is a density operator for which the function W(n, s) is

"R.J. Glauber, Phys. Rev. 84, 395 (1951).

For the density operator T(y, t) the function W(n, s)
has an essential singularity at s= t=i+2(e). The-
parameter x(p), introduced in Sec. VI, clearly assumes
the value



well behaved for Res&1, then by using Eqs. (6.8) and For the case of normal ordering, s=1, Eq. P.17) be-
P.5) we may write it in the form comes

Tr[T(0 t)(ot)ng!nj —b e!(e)n (7.19)

Xexp[—P(—s)X(n)g)r-Id'n, (7.13)

where s&I. Such a density operator is therefore a
linear combination, or, if W(n, s)&0, a statistical
average of the density operators T(n, —s) which
describe thc supcrposltlon of a cohelent cxcltatlon
upon a thermal equilibrium state. We see from Kq.
(7.6) that the larger the value of s for which the
function W(n, s) is 'regular, the higher are the tempera-.
ture and entropy of the thermal or chaotic component
of the mixtures (7.5) which may appear in the expansion
(7.13).

For the density operator T(v, t) the ensemble average
of any operator F is the function f(v, t) associated with
F by the correspondence C(—t),

We note that the general expectation value P.16)
factors into a part referring to the chaotic QCM alone
and a part representing the CGect of the coherent signal
of amplitude 'y'.

Tr[T (v, t) ( (at) nu"),j
—Tr[(T{0t}((at)num) jvm —n

s .-I-
y I (n, n) — 1+ (7 20)

(e) 2(e)

By using the de6nition2' of the associated Laguerrc
polynomial, we Qnd for high signal-to-noise ratios, i.e.,
for I v I'))(e), that the two leading terms of the Laguerre
polynomial yield

»[T(v,t)((a') "a").3
em(e) 1—s-

-(v')"v- 1+- 1+ (7 21)
2(e)

»[T(v,t)((o') "a").j

as shown by Eq. (6.2). Thus in particular by referring
to Eq. (I.5.14) we secure for the expectation value of

(( I)n ~) h 1 Speclahslng now~ first to tile case Of 1101'Illal Ordering~
s= j., and then to the case of a pure coherent 6eld, t= 1,
wc 6nd

t+s " 2lvl')v!n-ni (wa-n)
I p 15)

2 s+tJ
In terms of the mean number of quanta (e) of the
chaotic component of the 6eld, this ensemble average
Hlay bc written as

Tr[T (V,t) ('(at) nu"),j
j.—s=n!(e}"(!+
2(e)

Xl, ™"l — 1+ . (7.16)
(e) 2(e)

When the coherent signal or prescribed current,
vanishes, i.e., y is zero, we have

1—S
Tr[T(O, t)((s'}"s ),j=4, I!(a}"()+ . ().1))

2(e)

For large numbers of quanta, i.e., (e))) I
1—s I, we have

the approximation

Tr[T(0,t)( (at) "u"),j
t')e!(e)" 1+, . (7.18)

(e) 2

TrLT(v, t) (a') "a"j-(v*)"v"(1+e~(e}/Iv I') (7 22)

Tr[T(v 1)(ot) nomg (vw) nvtn (7 23)

respectively.
According to Eq. (I.6.51), the function W(n, s) for

the pure state of precisely e quanta, p —
I e)(e I, is given

by

W (n,s)=(elT(n, s)le)

Xexp — I.„-- . 7,24

The function W„(a,s) is analytic in s except for an
essential singularity at s=1, the pole at s= —1 in the
polynomial being canceDed by the zero of the factor
which multiplies lt. By setting s= 1—0) 0~ —i~ wc 6nd
for the state le)

W (a,1)=sP„(n)
de= (—1)"e( )'- &(lnl') (7 25)

d(lain)n

W(n, 0)=W (n)=2(—1)"e-') ('I, (4lnl'), P.26)
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W. (n, —1)= (ni p. in) = (e!)-'Ini '"e- ", (7.27)

where 8(x) is the one-dimensional b function.
The two examples considered thus far have had the

property that the weight function E(n) =s. 'W'(n, l) of
the I' representation exists either as a mell-behaved
function or as a tempered distribution. This property
cannot be true for the pure state that is the super-
position2' of two coherent states,

then, by using Eq. (I.6.22), we may write

,( )=(1-t)-[2'(0~')-t7(«&3
so that we have, on using Eq. (I.6.39),

W(n, s) =Tr[p(„)T(n,s)]
2lni'

CXP
1 t s—+t s+t s+t '

14&=& '"(I»+ I»), (7.28)

since it is not of the form noted in Sec. III. The nor-
malization factor lV is given by

%=2+2 exp( ——,'I p —bi ') cos[Im(y*b) j (7.29)

Rlld l)y us111g Eq. (I.6.35) wc Qnd cRS11y

W(n, s) =&4 I2'(,s) 14)

2E 2 Q—8 20.—p

+&& l» expl — (v*—n*)(&—) I

1—s

Xexp I
. (7.34)s+r'i-

The function W(n, s) has essential singularities at
s= —f&1 and at s= —t '&1. As the mean number of
qlla11tR (I) 'tc11(is 'to 1116111'ty, 'tllc pRlallletcl

x(p) = t—
approaches zero. The I' representation does not exist
for any member of this family of density operators.
The Wigner distribution and the function (nipin),
on thc othcI' hand» aI'c glvcn by

2
W(n, 0)=W(n)= (e" 'I I'—te"I I') (7.35)

j—t

2-t
W(n, —1)=(nipin)= exp—

1—ti
For this state x(p}=1, but because of the second two
exponential terms W(n, s) is not a tempered distribution
on the line Res=1.

For this density operator the functions W(n, O) and
W(n, —1) are given by

+ exp
i
—,(7.36)

1—t' ( 1—V'
respectively.

In Eqs. (2.1) and (2.2), the operators a and at are
dedned as linear combinations of the operators q and
p with coeflicients involving an arbitrary real parameter
X. Let us alter the scale parameter X to the new value
X' and consider the new set of operators"

W(n, O) =W(n)=2K '(e 'I~'I'+e 'I

+&+ I t))e—2(y+—a+) (ll—a)

+Ql )-" '"*-"') (7.»)

+(&IV) «V( —. (V —)(&"—')
I ()30)

2
) RIld l)y

1—s i

a'= (2l'1) '"(X'(t+iY 'p)- (7.37)
W(n, —1)=(ni pin&=E '(e I~'I'+e—)~~I'

+(~ I
t)&e-(V'-a') (1—«)

+&~I&) --- "-- ), (7.32)
which are clearly well behaved.

Lct us next consider the pal aIQctI'lzcd faIDlly of
density operators

o't= {2a)-»2(X'q—.Y-1p), (7.3g)

which are appropriate, for example, to the description
of a 6eld amplitude in a medium with a diferent
dielectric constant. These operators have the same
algebraic properties as the operators e and ut. In
particular, the operator u' possesses a complete set of
eigenstates

I
p&':

t (e) )"
I I 2~&&2~I (7 33)

&e)+2 ~ k(e&+2i

"l~)'=tlight&'.

(7.39)
We now consider the ground state I

0)' in the primed
where &e& is the mean number of quanta and only even system. In terms of the operator
numbers of quanta are present. If we set

and by
~=& &i(& )+2)

t = —(1++'X)/(1—V'») & —1,

the characteristic function X'($) for this density oper-
» J.R. Klauder, J. McKenna, and D. 0, Currie, J.Math. Phys.

{i, 734 (1965).
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ator is given by They are given by the integrals

By putting r =X 'X' and j=x+iy, we see that

D(x+iy) =D'(r x+ir-Iy)

= (pu)'i' (u i—v) "(u+iv) "e I'" ""'m'd-udv, (7.46)

where we have putThus we find for the unprimed characteristic function
p '=-'(r '—s), v '=-'(r' —s).

the value

X(x y) = exp[ ,'(—r'x—'+r 'y'-) j
If we put e=m we may find a generating function for

(7 4O) these quantities by forming the series

x(x,y) —=x(x+iy).
If we now use Kq. (6.24), we 6nd

W(n, s) = exp(nP n*E+—2sl k I')x($)x 'd'5
~

or, in real notation with W(u, v,s)=—W(u+iv, s),

W(u, v, s) = exp[2i(xv —yu)+-', (s—r')xs

2 (u ) 'y"'(Ol((n') "n").IO&'

= (ur)'~2 exp[—(p —y)u' —(v—y)v']I» 'dudv

(p+ v)y
1— -+—

p, p, p

If we now compare this relation with the generating
fullc't1011 fol' tllc Lcgclldl'c polynomials Pn(s),

+-'(s r')y'$—7» 'dxdy (1—2hs+h') '"=Q h"P (s)

L(»'—s) (» '—s)]"'
then we find, on making the identifications

h=(p ) "'y =l[(p/ )"'+( /p)'"3

'(O I ((n') "n").
I
o&'

2Q 2'v the result
Xexp — — — . (7.41)r-'—s r' —s

By setting s=o and s= —1 in Fq. (7.41), we fInd that
the signer function W(n) and the function (nl pin)
are given by

W (u,v,o) = 2 exp (—2r'u' —2r-'v') (7.44)

f—2r'u' —2u')
W(u, v, —1)= expl I, (7.45)

I»I+ lr I-' 4 "+1 i
respectively.

As a final illustration, let us consider the expectation
values of the s-ordered products for the state Io)'.

The function W(n, s) has essential singularities at s=r'
and at s=r 2. By letting the ratio r=X 9' depart
sufficiently far from unity, we may move one of the
singularities down to the line Res=0 and make the
parameter

x(p) =min(r', r—')
arbitrarily small.

The I' representation does not exist for any member
of this family of density operators, except for the special
cases t'= ~I for which we have

=u!(pv) "12P-(2[( /v)'"+ (v/p)"'3)
=u!2—"[(r'—s) (r-' —s)j-""

~1-p r' sy"' r-' —s '"-—~xP.I- I I
+ I. (7.47)

k2 r ' si r' s———
In particular, for s= 0 we have

'(oI(( ')" ")
I
o&'= '2 "P-(l("+ -')), (7.4g)

from which the mean number of quanta may be shown
to be

(u&='(OldnlO&'=-, '(r —r-) =-'(X/~' —~'/~) . (7.49)

VIH. ANALOGY %'ITH HEAT XHFFUSION

It is possible to draw an instructive analogy between
the function W(n, s) and the temperature distribution
on a plane. We discuss this analogy in the present
section and draw from it the conclusion that for every
dens1ty opcl'a'tol 'thc f1111c't1011 W(n s) Inus't a't SOInc
point in the half-plane Res&0 either assume negative
values or cease to be normalized.

~ Reference 29, p. 51.
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By differentiating the Gaussian convolution (6.32)
or, equivalently, by using Eq. (1.7.33), we find that
the function W(n, s) obeys the second-order partial
differential equation

BW(n, s) 1 O'W(n, s)

8$ 2 Be*Do.
(8.1)

If we express this equation in terms of real coordinates
by writing n=x+iy and W(x,y,s)=W(x+iy, s), then
it assumes the form

BW(x,y, s) 1 8 8
W x,y,s . (8.2)

This is a species of heat-diffusion equation in which
the function W( xy, s) plays the role of the temperature
at the point (x,y) and the variable s corresponds in a
negative sense to the time variable, s= —t. In this
analogy the convolution integral (6.32) is Poisson's
solution for the temperature in terms of the tempera-
ture distribution at an earlier time.

The dilferential equation (8.2) may be viewed as a
conservation law expressing the assumed absence of
sources or sinks of heat. It is a well-known feature of
solutions to the heat-diAusion equation that, in general,
they cannot be extrapolated into the past without the
appearance of singularities at some point. These singu-
larities, which represent the sources that originally
supplied heat to the plane, correspond to the singu-
larities exhibited by the function W(n, s) for Res) 0.

We have seen in Kqs. (6.20) and (6.28) that the
function W( sn) is normalized and non-negative when
s is real and & —1. It therefore corresponds to a tem-
perature distribution that for times later than t= —s= 1
is non-negative and describes a unit amount of heat on
the plane. With the passage of time the heat diffuses
over the plane according to the convolution integral
(6.32). Since there is only a unit amount of heat at
time t= —s=+1 and since the plane is of infinite
extent, the temperature at each point on the plane
tends ultimately to zero after a sufficiently long time.
This property of temperature distributions is true also
of the function W (n,s) since, according to the inequality
(6.29), the modulus of W(n, s) goes to zero as —s=t
tends to infinity.

It is evident that a temperature distribution that is
normalized and non-negative at the time t= —s=i
cannot have been normalized and non-negative at all
prior times. For if this were the case, then by the
argument given in the preceding paragraph the tem-
perature would be zero at all points of the plane. We
may prove the corresponding statement for the function
W(n, s) by using the convolution law (6.32).

Let us assume that the function W(n, s) is non-
negative and normalized at some real and positive value
of s=u&0. Then for Res&u, the modulus of the ex-
ponential which appears in the integral (6.32), where

we replace t by u to avoid confusion with the time
variable, is less than unity. We have, therefore, since
W(p, l) is non-negative by assumption, the inequality

I W(,~) I
&

2 d'P
W(p, e)

If the function W(P,N) is also normalized in the sense
of Kq. (6.20), then the integral over P is unity and we
may write

[W(n, &) f &2/(~ —~f (8.3)
for Res&I. Thus if the function W(n, l) were non-
negative and normalized for all positive values of u,
then, by letting u approach infinity in this inequality,
we would find that W(n, s) is identically zero. We have
shown, therefore, that the function W(n, s) must either
assume negative values or cease to be normalized at
some point s=u) 0.

If the modulus of the function W(n, s) exceeds the
value 2 ~u —s~ ' specified by Eq. (8.3) for any value
of u)Res, then we may conclude that the function
W(n, s) either assumes negative values or is not nor-
malized for s= u. The smallest value of u for which the
inequality (8.3) is violated may therefore be used as
an estimate (or, more precisely, an upper bound) for
the smallest value of Res at which the function W(n, s)
takes on negative values or ceases to be normalized.

We may illustrate the use of this estimate by con-
sidering the density operator T(y, t) for which the func-
tion W(n, —1) is given by Eq. (7.11) as

breaks down at
(e)+1 I,+1
I=1+2(e).

We estimate then that the function W(n, s) will mis-
behave in some way at this point or at a smaller value
of Res. According to Eq. (7.8) the function W(n, s)
has an essential singularity at s=1+2(e) for which
value it may be written as

W(n, 1+2(e))=xbn&(n —y).
This singularity corresponds to a unit amount of heat
concentrated at a point n=v at the time t= —1—2(e).

IX. TIME-REVERSED HEAT
DIFFUSION AND W(n, s)

According to the analogy developed in Sec. VIII,
the extension of the function W(n, s) from one value

W(n, —1)= exp-
(')+1 (I)+1)

where (e)= ——',(t+1) is the mean number of quanta.
This function attains a maximum value of ((e)+1) '
at n=y. Thus by setting s= —1 in Eq. (8.3), we find
that the inequality
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of s to another with a larger real part corresponds to
the continuation of an initial temperature distribution
to prior times. We derive various procedures for doing
this in the present section.

One method is to make use of the simple exponential
dependence of the function X(»,s) upon the variable s,

x(»,s) =e'-" ' "'x(»,t),
in conjunction with the complex Fourier transform
relations (6.23) and (6.24) which connect the functions
W and X. In this way we express the function W(n, s)
in terms of W(P, t) as the double integral

for Res) Ret, which if we set P= —n* becomes

W(n, s) =
S—t

W(n+y, y*—n*, t)

—2lyl' d'y
Xexp (9 4)

s—t

2nP
exp —W(y, y*,t)

s—t t—s

2
W(n, P,s) =

In a similar fashion, by expressing W (y,y, t) in terms
of X, we may verify the relation

(2( v*+Pv Iv I'-) d'v
Xexpl (9.5)

x'

W(n, s) =
s—t+l (s t) I » I—'%(tt, t) ''d'Pd'», (9 1)

for Res) Ret. At P= n* t—his relation reduces to

2 2lnl'
exp W(y, y*,t)

s—t s—t

2(nv* —n*v —Ivl') d'v
Xexp . (9.6)~ ~

s—t 7r

in which the integration over P must be done Grst unless
Res& Ret, in which case the double integral reduces to
the convolution (6.32). W(n, s) =

A second method permits us to avoid integrating
twice at the expense of introducing another complex
variable. Let us define the function W(n, P,s) as the
integral

W(n, P,s) = e &"+e&x(»,s)vr 'd'». (9.2)

2(s—t) ' W( +7, |3+7*,t)

XexpL —2(s—t) 'ly I'j 'd'y.

By writing W in terms of X, we express it as the double
integral

2(s—t) ' x(» t) exp[( +7)»*+(t3+V*)»
—2(s—t)-il & I2]~-2d2&d».

If Res) Ret, we may use the formula (I.A2) to integrate
over the variable y, after which it reduces to

This function may be shown' to be analytic in all three
variables for Res&x(p). The function W(n, s) is
W'(n, —n~, s). Let us consider the integral R(P~,n)=ee'~W(n —P*, —'1). (9.7)

Thus by putting s=+1 and t= —1 in Kqs. (9.4) and
(9.6), we may express the weight function of the I'
representation as the complex Fourier transforms

P(n) =s. 'e ~N~' e &' *&R(n*—y*, n+y)d'y (9.8)

and2, 84

P(n) =m.—'e~ ~' em&* "&R( y* y)d'7— (9—.9).

X. PROPERTIES COMMON TO ALL QUASI-
PROBABILITY DISTRIBUTIONS

We may illustrate these relations if we observe that
according to Eq. (5.22) the weight function R(P*,n)
of the R representation and the function W(n, P,s)
stand in the relationship

x(»,s)e &'+e4. 'd'»,

which we recognize as the expression (9.2) for W(n, P,s)
Thus we have the integral formula

W(n+y P+y* t)W(n, P,s) =
s—t

(—2IVI' d'y
Xexpl (9.3)

& s t—"C. L. Mehta, Phys. Rev. Letters 18, 752 (1967).

ln Sec. VI we introduced a parametrized distribution
function W(n, s) in terms of which ensemble averages
may be expressed as weighted integrals. It is instructive
to consider what features of this scheme are necessary
ones that must be shared by any scheme for expressing
quantum-mechanical ensemble averages as weighted
integrals. The present section is a discussion of this
point.

Classically, the ensemble average of a quantity f(n)
may be written as an integral over a phase-space
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here; for, although we have considered a complex plane
of orderings in the procedure of Sec. VI, there exists a
considerable variety of other types of ordering. The
three ways of ordering the operators p and q considered
in Sec. IV of I, for example, are easily generalized to a
complex plane of q, p orderings.

If, however, the relation (10.13) should apply to the
s-ordered products for some value of s, then, by forming

the ensemble average of the series (2.7) for D(&,s), we
would obtain the relation

X(&,s) = e&
' '&w(n)m'd'n, (10.14)

which upon Fourier inversion would imply
w(n) =W(n, s).
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Nuclear Interactions and Cosmic Radiation at Energies around 10' GeV
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The results of a series of Monte Carlo simulations of extensive air showers are compared with experi-
mental data from the Sydney 64-scintillator array and other experiments. The work has had two main
objectives: (a) the study of the composition of cosmic radiation around 10' GeV; (b) the study of nuclear
interactions at very high energies. In the first field, evidence is produced to show that the composition of
cosmic radiation is much the same at 10'5 eV total energy as at 5 X 10' eV total energy. Above about 3&10'5
eV the composition changes, the beam becoming progressively richer in heavier nuclei up to energies of
about 10'~ eV. In the second field, the main result reported is that at energies above 10"eV there is evidence
that much higher transverse momenta occur than at machine energies. If true, this implies that a force is
acting which is much stronger than the normal strong interaction.

l. INTRODUCTION

ERY high-energy nuclear interactions can only be
~ ~

~

~

~

~

~

~

~

~
studied using the cosmic radiation. Up to energies

of ~2&(10" eV, occasional interactions in very large
emulsion stacks can be found. Above that energy the
events become too rare for this method, and then air-
shower techniques (sometimes involving emulsions)
must be used. Several recent experiments' have sug-
gested that new fundamental processes may become
important above 10" eV; hence it is more important
than ever to study this region. In particular, we wish
to know the composition of the radiation and how it
varies with energy, both because this would make our
study of the fundamental interactions easier and also
because it is of considerable interest to astrophysicists.
In recent years considerable progress has been made
experimentally. We can now study the core region of
air showers in considerable detail. Until recently, how-
ever, progress was hindered because the mathematical
methods available were not able to relate these detailed
properties of the fundamental parameters of the basic
nuclear reactions and the nature of the primary particle.
However, this is no longer so. With the improvement in
speed and storage capacity of modern computers it has

~ Work supported by the Science Foundation for Physics of the
University of Sydney, and by the U. S. Air Force Ofhce of Sci-
entific Research under Grant No. AF-AFOSR-676-66.' C. B. A. McCusker, Can. J. Phys. 46, 397 (1968).

become possible to calculate quite one details in air-
shower core structure and so on from the fundamental
parameters using Monte Carlo techniques. In this
paper we report the results of such calculations using
four different primary particles (with A =1, 4, 16, and
64), eight diferent models of the fundamental nuclear
interaction, and three diGerent primary energies. These
theoretical calculations are then compared with the
results of experiments at Sydney and elsewhere.

We conclude that there is good evidence for the
occurrence of very high transverse momenta in nuclear
interactions at energies &10'4 eV and that this implies
the existence of some very strong force; that the com-
position of the cosmic ray beam is roughly constant
up to about 2&(10" eV; and that from this energy up
to about 10'~ eV it becomes progressively richer in
heavier nuclei.

2. SIMULATION PROCESS

In the simulation process we supposed that incident
particles of atomic weight A and energy E„were in-
cident vertically on an exponential atmosphere and
aimed at the center of a 9&9array of scintillators. Each
scintillator measured 0.5X0.5m, and they were in
contact. The position in the atmosphere of each inter-
action of all hadrons was sampled by the Monte Carlo
technique from a distribution giving a mean free path
of X g/cm'. The numerical value of X was 90 g/cm' for
protons and pions, and 65, 43, and 42 g/cm', respec-


